Some Representations of the Nonparametric Maximum Likelihood Estimators with Truncated Data
نویسندگان
چکیده
منابع مشابه
On the Maximum Likelihood Estimators for some Generalized Pareto-like Frequency Distribution
Abstract. In this paper we consider some four-parametric, so-called Generalized Pareto-like Frequency Distribution, which have been constructed using stochastic Birth-Death Process in order to model phenomena arising in Bioinformatics (Astola and Danielian, 2007). As examples, two ”real data” sets on the number of proteins and number of residues for analyzing such distribution are given. The co...
متن کاملDensity Estimators for Truncated Dependent Data
In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...
متن کاملMaximum likelihood estimation for longitudinal data with truncated observations.
We obtain maximum likelihood estimates of the parameters when the observations on the response variable in a repeated measures design are truncated above a cutpoint. The maximum likelihood equations are solved iteratively using an EM-like procedure. It is observed that these estimates have smaller mean squared error than recently proposed iterative weighted least-squares estimates. The results ...
متن کاملThe Convergence of Lossy Maximum Likelihood Estimators
Given a sequence of observations (Xn)n≥1 and a family of probability distributions {Qθ}θ∈Θ, the lossy likelihood of a particular distribution Qθ given the data Xn 1 := (X1,X2, . . . ,Xn) is defined as Qθ(B(X 1 ,D)), where B(Xn 1 ,D) is the distortion-ball of radius D around the source sequence X n 1 . Here we investigate the convergence of maximizers of the lossy likelihood.
متن کاملBayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data
This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1988
ISSN: 0090-5364
DOI: 10.1214/aos/1176350826